
atox
User Manual

Magnus Lie Hetland
Version 0.5 April 23, 2004

Atox User Manual 2

Contents

1 Introduction 3
1.1 How to Get It . 4
1.2 Usage . 5
1.3 The Small Print . 6

2 The Atox Format Language 7
2.1 Format Description Structure . 8
2.2 Patterns . 9
2.3 Deleted Patterns . 10
2.4 Sequences . 10
2.5 Alternatives . 10
2.6 Repetition . 11
2.7 Indentation . 12
2.8 Definitions . 13
2.9 Glue Patterns . 14
2.10 Backtracking . 15

3 Enlisting XSLT 16

4 Known Problems 18

5 Plans, To-Do List 19

6 Revision History 20

7 License 21

Atox is a framework for automated markup. With it one can quite easily write custom scripts for
converting plain text into XML in any way one wishes. Atox is normally used as a command-line
script, using a simple XML language to specify the desired transformation from text to markup, but
it is also possible to build custom parsers using the Atox library. The name (short for ASCII-to-XML)
is inspired by such UNIX tools and system functions as atops and atoi.

Atox User Manual 3

1 Introduction

Documents have structure. Simple, plain text without any kind of structure is
often not good enough to represent what you want to put into your documents.
This is why we have markup, which comes in several flavors. One is, of course,
the closed, proprietary form of “invisible” markup you get in a binary docu-
ment from a word processing program such as Microsoft Word. Another is the
form of markup that is actually represented as some form of tagging of the text.
The most standardized and popular markup language at the moment is proba-
bly XML, and using various tools (such as an XSLT processor) XML markup can
be transformed into other markup formats (such as TEX or RTF, for example).

However, in many cases writing XML manually can be impractical. The reasons
may be many — you may simply be tired of typing the tags (even though a
good editor will help here), you may be working with people who don’t want
to learn about markup, or you may be working with documentation inside
comments in source code. There are editors out there that can make the XML
part almost invisible to you in the cases where this is feasible, but working with
plain text still has its advantages. It is easily sent over (and read in) email, it
interacts favorably with version control systems such as CVS, and in some cases
you may simply have existing text without markup that needs to be structured
automatically. Enter automatic markup.

There are many solutions for adding markup automatically to plain text; here
are some (but by no means all):

• Wiki Text Formatting1: Some formatting rules that are used in Wikis.

• Setext2: A precursor to reStructuredText.

• reStructuredText3: A markup language with lots of functionality, based
on StructuredText and its ancestors.

• txt2html4: A tool for converting text to HTML, with quite flexible inter-
pretation of the input. There is also a version supporting TEX output.

• David Mertz’s Smart ASCII5: Mertz’s used this in writing his book “Text
Processing in Python.”

• Markdown6: A text-to-HTML converter based on lessons learned from
several other similar tools (but still with a fixed input format).

• Jeni Tennison’s XSLT Markup Utility7: A simple utility to mark up words
in plain text using XSLT directly.

1http://www.c2.com/cgi/wiki?TextFormattingRules
2http://docutils.sourceforge.net/mirror/setext.html
3http://docutils.sf.net/rst.html
4http://www.aigeek.com/txt2html
5http://gnosis.cx/TPiP
6http://daringfireball.net/projects/markdown
7http://www.jenitennison.com/xslt/utilities

Atox User Manual 4

• And many, many more (such as atx8, textile9, Grutatxt10, EtText11,
Latte12, Confluence13. . .).

There are, as you can see, many formats out there. (Even more, including a
proposal for standardization, are described on Bill Seitz’s Smart ASCII page14).
I have too, for several years, pondered various possible ways of making such
implicit plain-text markup as “invisible” as possible (and implemented quite a
few scripts for this sort of thing along the way).

As I am sure you have guessed, I’m not completely satisfied with any of the
existing solutions that I’ve seen so far. But I have also realized that if I simply
introduced another format, I would only solve the problem for myself, because
others probably wouldn’t be satisfied with that. Also, the solution most likely
would be temporary, because I’m likely to change my mind about how I want
the format to be, and new applications would drive me to introduce new fea-
tures, leading to a bloat similar to that found in some other formats.

The problem, in my opinion, with most of the existing tools, is that the input
format is fixed, and so is the existing output formats. My idea for a solution
was twofold:

1. Let the user specify the input format.

2. Use user-specified XML as the output format, and encourage the use of
XSLT to further create other forms of output.

In many ways, Atox the becomes for plain text what XSLT is for XML: A way of
describing a transformation. Although Atox is quite easily usable as a library
for plain text parsing (producing a DOM tree based on the grammar supplied
by the user) this API is not described in the current documentation, mainly be-
cause it isn’t completely stable yet. The XML format used to describe the input
format, however, and the command-line tool used to apply it, are described in
the following sections.

1.1 How to Get It

Atox is currently hosted at SourceForge, at http://atox.sf.net. The current
development sources are available through CVS, and the most recent stable
version may be downloaded from the SourceForge project page15.

8http://www.aaronsw.com/2002/atx
9http://textism.com/tools/textile

10http://www.triptico.com/software/grutatxt.html
11http://ettext.taint.org/doc/ettext.html
12http://www.latte.org
13http://confluence.atlassian.com/renderer/notationhelp.action
14http://webseitz.fluxent.com/wiki/SmartAscii
15http://sf.net/projects/atox

Atox User Manual 5

1.2 Usage

Using the atox program is very easy:

$ atox -f markup.xml input.txt > output.xml

The file markup.xml describes the structure of the input text, as well as how
to mark it up, using the format language described later in this document.
The file input.txt contains the text to which markup should be added, and
output.xml is the resulting XML file.

In general, you can specify zero or more input files. If none is specified, stan-
dard input is used.

Atox can be customized by setting several options. You can set these by creat-
ing a config file called .atoxrc in your home directory, using the fairly stan-
dard configuration syntax (without variable interpolation) described in the
Python Library Reference section on ConfigParser16, with the exception that
the config file should not have any sections. Two alternative ways of setting
options exist: Using environment variables or command-line switches.

If you want to set an Atox option using environment variables, use the ATOX_
prefix, and put the name in uppercase. In other words, to modify the option
input_encoding, use an environment variable called ATOX_INPUT_ENCODING.
To set options through command-line switches, use the name of the option as
a long option, with underscores changed to dashes. For example, the option
format_file can be set using the switch --format-file. In some cases, you
can also use the first character of the option as a single-character switch (for
example -f for format_file).

The following lists all the available options, along with the short command-line
switches, where available.

• format_file (-f) is the name of the format file, optionally without the
.xml suffix. The default is markup.xml.

• output_file (-o) is the output file, with the default being standard out-
put.

• input_encoding sets the encoding to use for plain-text input, with the
default being iso8859-1.

• output_encoding sets the encoding to use for XML output, with the de-
fault being utf-8. Note that if you use XSLT fragments in your format
file, your XML output file will be fed through an XSLT processor. The
output_encoding variable will then only determine the encoding used
for the file that is fed to the XSLT processor, not the file that comes out of it.
In order to affect the encoding of that file, you should use an xsl:output
declaration (see any XSLT referenc for more information).

16http://www.python.org/doc/lib/module-ConfigParser.html

Atox User Manual 6

• xslt_command is the command used to process XSLT internally. This is
only used when you put XSLT fragments in your format file. (See Enlist-
ing XSLT, later in this document.) The strings ${in}, ${out} and ${xsl}
are used as placeholders for the input file, output file and XSLT stylesheet.
The default is xsltproc -o ${out} ${xsl} ${in}. (Note: If you’re set-
ting this command as an environment variable, make sure you backslash-
escape the dollar signs.)

• input_ext is the file extension of input files. If this is left out in input file
names, it is automatically added unless the file name/path already con-
tains a dot after the last path separator (and therefore, probably, another
extension). The default is .txt.

• format_ext is the file extension of format files. If this is left out in format
file names, it is automatically added unless the file name already contains
a dot (and therefore, probably, another extension). The default is .xml.

So, for example, the following will will have the same effect as the previous
command line:

$ cat atox.txt | ATOX_OUTPUT_ENCODING=utf-8 atox -o foo.xml

If, for example, you wanted to use utf-8 as your default input encoding, you
could put the following in your .atoxrc file:

input_encoding = utf-8

It is possible to produce (subsets of) some useful formats such as DocBook or
XHTML directly with Atox, but in most cases you’ll want to transform the XML
into something else, using, for example, an XSLT processor such as xsltproc17,
Xalan18 or Saxon19. For more information on XSLT, see the W3C Web site20 or
one of the many online tutorials (such as the one from W3Schools21). See also
the doc directory of the Atox distribution for an example of how XSLT can be
used to transform Atox output into HTML and LaTEX. For information on how
to use XSLT directly in your Atox format files, see Enlisting XSLT, below.

1.3 The Small Print

Atox comes with no warranty of any kind. Also, even though the current ver-
sion works well, and the project is currently (as per early 2004) being actively
developed, there is no guarantee of continued support. What you see is what
you get.

17http://xmlsoft.org/XSLT
18http://xml.apache.org
19http://saxon.sf.net
20http://www.w3.org/TR/xslt
21http://www.w3schools.com/xsl

Atox User Manual 7

2 The Atox Format Language

The Atox parser is a deterministic top-down left-to-right parser, somewhat
similar to an LL(1) parser, but with a somewhat non-standard tokenization.
Each token is represented as a regular expression (actually, you may imple-
ment any kind of parser and use it as a token). The text is then tokenized as
it is parsed: When the parser decides which rule to apply, it searches for all
the applicable tokens, and applies the rule that occurs earliest in the input text.
For example, using the alt tag (with the Atox namespace) you can make the
parser choose between two alternatives, like this:

<ax:alt>
<f>foo</f>
bar

</ax:alt>

When the parser tries to parse this pair of alternatives at any point in the text,
it will look for foo and bar and choose either the f or b element, depending on
which token appears first.

In some cases, two alternative tokens may occur at the same position in the
text; in this case, the parser chooses the one that is listed first inside the alt
tag. So, for example, in the following (contrived) example, the a element will
be parsed:

<ax:alt>
<a>foo
foo

</ax:alt>

The moral of this last mechanism is that you should place your most specific
alternatives first. For example, the first token of a list element and that of a
paragraph may occur at the same position in the input; however, because the
list item is more specific (you want it to override the paragraph) it should be put
first.

There are many excellent parser generator toolkits available for Python, some
of them using more fancy parsing strategies than the LL-like one used here.
I have, in fact, tried some other parsing strategies (and existing parsing pack-
ages) in earlier versions, but ended up with this one, partly because of the need
to support the somewhat unusual tokenization method, and partly because a
deterministic top-down parsing strategy seems to work well with plain-text
documents, and also leads to significant speedups over some other methods.
(The current Atox implementation isn’t exactly lightning fast, though.)

There is one thing you should be aware of, though: The parser only considers
the next token when choosing what to parse. This means that if you want it to
recognize a text-block as a header (rather than a paragraph, for example) be-
cause it is underlined in some way, you must give it some form of lookahead.
There is currently no support for this directly in Atox, but, luckily, the regular

Atox User Manual 8

expression language used supports lookahead quite nicely. The resulting reg-
ular expressions aren’t always pretty, but it works. (This might be improved in
future versions.)

2.1 Format Description Structure

The main document element of a format description is format. It should con-
tain a definition of the Atox namespace, called ax by convention:

<?xml version="1.0"?>
<ax:format xmlns:ax="http://hetland.org/atox">
<!-- Put the rest of the format description here -->

</ax:format>

The format descriptions are similar to XSLT stylesheets in that they mimic the
output by using the desired output tags, and at the same time they are similar
to XML schemas, which describe the structure of their input:

<?xml version="1.0"?>
<ax:format xmlns:ax="http://hetland.org/atox">
<article>
<!-- Content structure here -->

</article>
</ax:format>

This will add a document tag called article to the output.

The top-level document element is special — it will always enclose the entire
document. All other output tags (those that do not use the Atox namespace)
only enclose the occurrences tokens they contain. An example might clarify
this (I’m dropping the format tag here; it is implied in this and the following
examples):

<salutation>
Hello

</salutation>

This format will enclose the entire input in the salutation tag, but only the
first occurrence of the string Hellowill be enclosed in an em tag. In other words,
Hello, world! will be transformed into

<salutation>Hello, world!</salutation>

If an output tag contains several tokens (or other structures, which themselves
contain tokens) it will enclose them all in the output.

The following sections describe the various special format tags (those that use
the Atox namespace) you can use to specify the structure of the input.

Atox User Manual 9

2.2 Patterns

Any plain text will be interpreted as a regular expression, or pattern, currently
the only form of built-in token in Atox. A series of patterns may only be broken
up by tags — if you try to separate them with whitespace, for example, they
will be treated as a single pattern. Whitespace at the beginning and end of
the pattern is stripped, but internal whitespace is kept. The regular expression
language is described in the section about the re module in the Python Library
Reference22.

Patterns are used without any flags (such as multiline, verbose and so forth),
but those can be specified by using the (?...) syntax (also described in the
Library Reference). Note that line breaks are normalized by Atox, so that all
line break combinations (that is, \r, \r\n and \n) are treated as single newline
characters, and may be matched as such in patterns.

In addition to the implicit syntax for patterns, you can use the pat tag to be
explicit. For example,

<ax:pat>F.*r</ax:pat>

will match (among other things) Foobar. Note the use of the Atox namespace
prefix — without it, this would be interpreted as an output tag named pat.

There is a built-in set of patterns that is quite useful because they occur fre-
quently in practice, but are a bit tiring to type. They are the start-of-block and
end-of-block patterns. They represent the start and end of a block (a lump of
text, separated from other blocks by empty lines) such as paragraphs, block
quotes or list items.

The start-of-block pattern is available through the ax:sob tag, and is equivalent
to (?=\S) which means that the next character is a non-whitespace character.
The end-of-block pattern is available through the ax:eob tag, and is equivalent
to the somewhat more cumbersome (?=\s*\Z|\n\s*\n), which means that the
following text is either an optional run of whitespace, ending at the end of the
text, or two newlines, possibly separated with some whitespace. Both of these
should always be used as empty tags. While they can be useful on their own
(for example, the ax:eob tag can be useful to end blocks that start with some
specific pattern, such as a list item), they are often used as a pair. You can then
use the ax:block element instead. It is a form of sequence (see a description
later in this document section), so it can contain other contents (or not) but it
will always implicitly begin with an ax:sob and end with an ax:eob.

As an example, the following is a natural way of implementing paragraphs:

<p>
<ax:block/>

</p>

If you have inline elements, such as emphasis (examples of this may be found
later in this document), they can be put inside the ax:block element.

22http://www.python.org/doc/lib

Atox User Manual 10

2.3 Deleted Patterns

Sometimes you want to match a pattern in the input text, but keep drop it in
the output. For example, a note might start with the word Note: followed by
some whitespace, and it might end with a double newline. Since you’re using
a note tag in the output, there is no need to keep the Note: string:

<document>
<note>
<ax:del>Note:\s+</ax:del>
<ax:eob/>

</note>
</document>

In order to get the note element to span the entire note, I’ve used an ax:eob
(end-of-block) to mark the end of the contents.

2.4 Sequences

Any two tags that follow each other will implicitly be interpreted as a sequence.
It is possible, however, to be explicit about this too, using the seq tag:

<ax:seq>
<ax:pat>foo</ax:pat>
<ax:del>bar</ax:pat>

</ax:seq>

Note that sequences (including all non-atox elements, including the main doc-
ument element) can be empty. (Empty sequences can be matched anywhere by
Atox, because they match any empty slice of text, just like the empty pattern.)

2.5 Alternatives

Sometimes you want the parser to choose between several alternatives. This
basically means that the input may contain one of several possible structures.
It is important to note that the parser must be able to choose among these alter-
natives by only looking at the first token (pattern) in each of them.

Alternatives are represented with the alt tag:

<ax:alt>
<ax:pat>foo</ax:pat>
<ax:pat>bar</ax:pat>

</ax:alt>

Atox User Manual 11

2.6 Repetition

Normally, each element occurs once and only once. You can, however, adjust
this by setting the minOccur and maxOccur attributes. For example, the follow-
ing will match anything from zero to five occurrences of foo:

<ax:pat minOccur="0" maxOccur="5">foo</ax:pat>

As you may have surmised, the defaults for both of these attributes are 1. When
using them on structure tags (those with the Atox namespace) there is no need
to give an explicit namespace. However, you may also use the attributes on
output tags — in this case, you should be explicit about the namespace. Here
is an (incomplete) example of how minOccur and maxOccur might be used on
an output tag:

<list>
<item ax:minOccur="1" ax:maxOccur="inf">
<!-- Add the content structure of list items here -->

</item>
</list>

Note the use of inf (short for “infinite”) in maxOccur here — that means that
there is no upper limit to the number of occurrences.

There is one additional quirk about repeated elements that’s worth mentioning
— in fact, it can be quite important in many cases: By default, the parsing
of repeated elements is greedy. Like with regular expressions, this means that
Atox will match as many occurrences of the repeated elements as possible (and
allowed by ax:maxOccur). Sometimes what you want is non-greedy matching,
that is, you want to match only as many occurences as can be found before the
first occurrence of the following element. Here is an example where greedy
matching will foul things up:

<letter>
<p ax:minOccur="0" ax:maxOccur="inf">
<ax:block/>

</p>
<ps>
<ax:del>PS:\s+</ax:del>
<ax:eob/>

</ps>
</letter>

This shows the structure of a letter, which consists of a sequence of paragraphs,
followed by a postscript, that is, a paragraph that begins with PS:. You could
structure this differently (for example, by a repeated ax:alt element, where
the ps element came before the p element), but if you try to use it the way it is,
you will invariably get an error message — the PS: pattern wont’t be found.
Why? Because Atox has already parsed all paragraphs as p elements, using

Atox User Manual 12

greedy matching, so there is nothing left to be parsed as a ps element. What we
need is to turn on non-greedy parsing, so that once a ps-compatible paragraph
comes along, the stream of p elements will come to a halt. That’s easily doable
by setting the ax:greedy attribute to a false value (either false, no, off, or 0,
as opposed to true, yes, on, or 1, with all values being case-insensitive). The
default value is, of course, true, but you can set that explicitly too, if you want
to. In other words, adding ax:greedy="false" to the p element in the previous
example will make it behave the way we want.

One thing is worth noting about non-greedy repetition: It won’t be inter-
rupted by empty matches. For example, an empty sequence or an element with
ax:minOccur set to zero can match an empty piece of the input at any point.
If Atox were to let such matches interrupt a non-greedy repetition, the repeti-
tion wouldn’t get anywhere. So empty sequences won’t interrupt it at all, and
only non-empty matches of optional elements (with ax:minOccur="0") will in-
terrupt the repetition. The element occurring after one (or more) such empty
match can, however, interrupt the repetition. (If you find this stuff confusing,
rest assured that you can probably just ignore it. Atox is designed to do the
“right thing” here.)

2.7 Indentation

A powerful mechanism for indicating structure in plain text is indentation.
In Atox you may parse indentation using the ax:indent and ax:dedent tags,
indicating that the current line has ha higher or lower indentation level, re-
spectively, than the current level. Usually, an easier way of handling inden-
tation, though is to use the ax:indented tag, which, in effect, combines one
ax:indent and one ax:dedent (the indent at the beginning and the dedent at
the end of the tag), and makes sure the dedent goes back to the level before the
indent. That way, you don’t have to keep track of any additional indentation
inside the indented block to make sure the indent and dedent match up. The
ax:indented element can be used without any contents, just like the ax:block
element.

An example of using indentation to parse nested lists as well as one for parsing
indented code blocks may be found in the demo directory of the Atox distribu-
tion. The rest of this section gives a more thorough description of the indenta-
tion rules used.

The indentation rules used are quite similar to those defined in the Python
language reference23. The rules may be summed up as follows:

• A (logical) line is simply a physical line (terminated by a newline)

• Each line containing non-whitespace characters has an indentation level,
determined by the whitespace at the beginning of the line.

• A whitespace-only line does not have an indentation level and does not
affect the indentation structure.

23http://www.python.org/doc/current/ref/indentation.html

Atox User Manual 13

• Each space character adds 1 to the indentation level. A tab character is
interpreted as the number of spaces needed to reach the next multiple
of eight. No other whitespace characters are interpreted as part of the
indentation.

• If a line has a higher indentation level than the highest one on the inden-
tation stack (initially only contains zero), an indent event occurs (before
the whitespace indentation). Only one indentation event may occur in
one line. When an indent event occurs, the corresponding indentation
level is pushed onto the indentation stack. The indent element skips over
the whitespace that causes the indent, in the same way that a pattern
skips over the matched text.

• If a line has a lower indentation level than the previous one, a dedent
event may occur. A dedent event occurs whenever the indentation level
is lower than or equal to an indentation level which is alredy found on
the indentation stack, except for the most recent one (one event occurs
per such passed). In other words, each time the indentation level returns
to a previous indentation, a dedent event occurs and the corresponding
level is popped off the stack (in addition to the top-level indent). If any
dedents occurred (but not otherwise), the new level is pushed onto the
stack. Dedent events occur at the end of the last non-whitespace line
before the line which has a lower indentation level, and the dedent tag
does not skip over any input text.

• End-of-File causes all current indentation levels to be dedented. (In other
words, the end-of-file token is considered to occur at indentation level 0.)

2.8 Definitions

In many cases the structure of a format description may be made more readable
by introducing definitions. You can define a sub-structure in one place and use
it in another. This also allows a structure to contain itself (recursion) which can
be useful in many cases (for example, if you want to allow emphasis within
emphasis or quotes within quotes, and the like).

Definitions are made with the def tag:

<ax:def name="foo">foobarbaz</ax:def>

You can place any structure (that is, a combination of sequences, alternatives,
repetitions, output tags and patterns) inside the definition. You can then later
refer to it with the match tag:

<ax:match name="foo"/>

The parser will treat the description as if the sub-structure actually occurred at
the location of the match tag.

For a more complete example of how all these tags are used, check out the file
markup.xml in the doc directory of the distribution — it describes the plain-text

Atox User Manual 14

structure and XML output of this manual. For several smaller examples, see the
demo directory.

2.9 Glue Patterns

Usually the standard Atox parsing mode is quite convenient — it searches for
the first occurrence of a valid element and starts parsing that. However, some-
times you want to make sure that the parsed elements are contiguous. (This
is what happens in ordinary LL(1) parsers, for example.) This is only relevant
when the parser can make choice, in other words, for ax:alt elements and for
repeated elements (those with minOccur and maxOccur set to different values).

Consider, for example, that you want to represent emphasis by enclosing
words in asterisks, like *this*. Perhaps you also want this to represent links,
when they are followed directly by URLs in parentheses. A simple way of im-
plementing this would be the following:

<ax:del>*</ax:del>
<ax:del>*</ax:del>
<url ax:minOccur="0">
<ax:del>\(</ax:del>
<ax:del>\)</ax:del>

</url>

Note that the asterisks and the parentheses are escaped with backslashes —
that is because asterisks and parentheses have special meanings as parts of
regular expressions.

There is one problem with the scheme above. When applied to a piece of text
where some text in parentheses occur after an emphasized piece of text, the
parentheses and all the text in-between will be included. For example,

This is a *test*. (Fee fie foe.)

will be turned into:

This is a test. <url>Fee fie foe.</url>

What we want is to require that the URL element occurs immediately after the
emphasis, possibly with some whitespace in-between. We do this by gluing the
first (deleted) pattern in place (and adding the proper whitespace to it):

<ax:del>*</ax:del>
<ax:del>*</ax:del>
<url ax:minOccur="0">
<ax:del glue="">\s*\(</ax:del>
<ax:del>\)</ax:del>

</url>

Atox User Manual 15

The attribute used is called glue (and as with minOccur and maxOccur you
should add the ax namespace to it when using it on non-Atox elements). It is a
regular expression, just like the body of pat elements, and places a restriction
on the text that may be skipped before finding the element. In this example
an empty piece of glue is used, meaning that the del element must be located
immediately, without skipping anything.

Note that I glued the ax:del element and not the url element. That is be-
cause glue is applied outside repetition, so even if the url element were re-
peated zero times (as allowed by the minOccur attribute) the glued would first
match the repeated element (which would match some parentheses later in the
document) and then check whether they occurred at the current location (which
they wouldn’t).

In other words: The choice (whether to actually match a URL or not) is made
before the glue check is made. However, the glue is only useful if it is applied
before the choice is made, so it can influence that choice.

Glue can be especially useful in conjunction with backtracking (described later
in this document). See the indent example in the demo directory of the dis-
tribution for an example where (non-empty) glue is necessary to discriminate
between quotes and definition list entries.

In previous versions of Atox, there was Boolean attribute called glued. This
is no longer available, but it is equivalent to using glue with an empty glue
pattern.

2.10 Backtracking

With the kind of left-to-right parsing used in Atox, you sometimes run into a
very specific kind of trouble: You have two different things you want to parse,
and they start out just the same. In other words, as Atox encounters the text
feature, there is no way of telling which way to parse it. It’s a bit like dealing
with statements like “Ooh, how useful. Not.” Unless you can hear the tone of
voice, you don’t know that the statement is actually a negative until you see
the “not.”

A simple example of this would be the previous glue example, where a piece
of emphasized text can be turned into a link by putting a URL after it. (Glue is
often useful in conjunction with backtracking.) What you would really want is
to parse it as a link, not as emphasized text. But you don’t know about the URL
until you reach it. . .

There are several ways of dealing with this problem, most of which aren’t
easy to implement with Atox’s special tokenization strategy. Backtracking is
the simplest and most general strategy (although it can be quite inefficient).
In Atox you use the ax:try tag to do backtracking. It will look for potential
matches for its contents, using the standard search rules (basically looking for
its first descendant in the text); however, when it finds a potential match it

Atox User Manual 16

won’t commit to it completely, as the normal parsing strategy does. Instead, it
will try to parse its contents at that position, but if it fails, it will keep looking.

Here is an example of how this works, again using the emphasis-as-link exam-
ple (the following should be put inside an ax:alt tag):

<ax:try>
<link>
<ax:del>*</ax:del>
<ax:del>*</ax:del>
<url>
<ax:del glue="">\s*\(</ax:del>
<ax:del>\)</ax:del>

</url>
</link>

</ax:try>

<ax:del>*</ax:del>
<ax:del>*</ax:del>

Consider how the following is parsed:

This is emphasis. *This* (atox.sf.net) is a link.

When Atox starts looking for a link element, it first finds the first star (*). It
happily starts parsing but when it comes to the left parenthesis, there is none —
at least not glued right after the star-enclosed text. Therefore this potential link
occurrence fails. Normally, this would cause Atox to bail out, but because we
have used an ax:try tag, it keeps looking. Luckily, the next star is luckier (no
pun intended), and is used as the next link occurrence. So when Atox decides
what do do at the beginning of this string, it starts parsing an em occurrence,
because that is found right at the beginning.

Note that although backtracking is very powerful, it can be very inefficient if
used wrong. If you rely on it all over the place, and nest several ax:try tags
inside each other, so that Atox has to try out several alternatives at each level,
the number of combinations to try out grows exponentially with the number of
levels. Even for such simple applications as the previous example, it can slow
things down a bit. For example, if there are lots of emphasized pieces of text
but quite few links in your document, the backtracking approach will still try
to parse all emphasis as links.

3 Enlisting XSLT

Atox has been designed from the beginning as a companion to XSLT — you
use Atox to mark up a plain text file and some XSLT tool to convert the result-
ing XML file further. This workflow works well when the XML file is in some
common interchange format and you have XSLT stylesheets that convert it to
various output formats, such as XHTML, TEX, RTF, xsl:fo, or whatever.

Atox User Manual 17

But XSLT has many uses, and is a very powerful tool. So powerful, in fact, that
some functionality was intentionally left out of Atox because you can easily
use XSLT to achieve the same things. Consider, for example, the problem of
getting attributes in your output. Atox won’t let you do this — it will only
let you mark up the attribute values as elements. For example, the following
could be a marked-up link:

<link>The Python website<url>http://www.python.org</url></link>

This is as far as you get with the built-in Atox functionality. You could then use
the following XSLT templates to transform the URL to an attribute:

<xsl:template match="link">
<link url="{url}">
<xsl:apply-templates/>

</link>
</xsl:template>
<xsl:template match="link/url"/>

The first of these adds a url attribute consisting of the contents of the url
element, while the second template silently matches (and eliminates) the url
element.

It may seem odd to delegate such a basic operation to XSLT, but the point is
that there are many similar “basic” operations (such as dealing with names-
paces or automatic numbering or what-have-you). Instead of implementing
many ad hoc pieces of functionality, it is better to let XSLT do the job, because
it does the job so well. (Note that any XSLT element can be included, not just
xsl:template elements. Another useful candidate is xsl:output, which can
be used to control the details of the output format from your XSLT processor.)

In general, the rule is: Let Atox do the parsing and XSLT the transformations.
(Some oft-used, simple transformations are available, though for convenience.
One example is ax:del, which could also have been performed by XSLT.)

If you’re going to do a specific transformation (such as adding attributes) re-
gardless of output format, you’ll need to apply two XSLT stylesheets to your file
(or, worse, duplicate the functionality in all your output-specific stylesheets).
This can be a bit impractical, and it could lead to you using only the Atox
format file without the accompanying XSLT stylesheet, leading to an incorrect
interchange format. Wouldn’t it be neat if you could put XSLT templates right
into your Atox format files? Guess what — you can.

Any top-level element (that is, child elements of ax:format) that use the the
XSLT namespace (see the example below) will be filtered out of your format
and collected into an “invisible” XSLT stylesheet. In addition to any templates
you define there, a template which copies everything by default is added, so
you only have to add templates for things you want to change. This stylesheet
will be used automatically by Atox, using the option xslt_command as a shell-
out. (In future versions Atox may also use Python XSLT libraries to avoid the
overhead of using temprary files for the automatic XSLT processing.)

Atox User Manual 18

If you don’t use any XSLT templates, no such processing occurs.

Here is an example stylesheet that some sloppy HTML with links:

<?xml version="1.0"?>
<ax:format xmlns:ax="http://hetland.org/atox"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<html>
<a ax:maxOccur="inf">
<ax:del>*</ax:del>
<ax:del>*</ax:del>
<url>
<ax:del>\s*\(</ax:del>
<ax:pat>[a-zA-Z]+:\S+[a-zA-Z0-9/]</ax:pat>
<ax:del>\)</ax:del>

</url>

</html>
<xsl:template match="a">

<xsl:apply-templates/>

</xsl:template>
<xsl:template match="a/url"/>

</ax:format>

It may seem a bit overwhelming (and certainly not beautiful) but it’s not all that
complex, really. When applied to the text

This is a *test* (http://test.com).

it will produce the following output:

<?xml version="1.0" encoding="utf-8"?>
<html>This is a test.
</html>

4 Known Problems

Quite a bit of the code is still rather experimental, and could do with some
refactoring for transparency and readability. If you find bugs that aren’t men-
tioned (and you’re using the most recent version), please report them to the
Atox mailing list24.

• There seem to be some problems with using ax:try recursively.

• There is quite a bit of redundant processing going on, so Atox is slower
than it has to be. I will attack this in time, but, as the saying goes: Make it

24mailto:atox-user@lists.sourceforge.net

Atox User Manual 19

work, make it better, make it faster. It more or less works now, so. . . (There
are many options for making it really fast, eventually, such as using C
extension modules. Because Atox is a batch-mode program, this is not a
top priority — nag me about it if you need more speed.)

5 Plans, To-Do List

The following are some possible features for future releases (in a rather arbi-
trary order):

• Add ax:line, ax:sol, and ax:eol (similar to the block elements, but for
lines).

• Add an ax:la (lookahead) element for pattern-lookahead? (Just as as
syntactic sugar, to avoid the need for (?=...).)

• Perhaps rework the tokenizing strategy to avoid some unnecessary work.
Encapsulating the discovery of occurrences of atomic parsers (tokens)
might make it possible to use hashing in ax:alt tags, to speed up the
selection process there considerably. It would require quite a bit of refac-
toring, though.

• Improve the command-line interface (with more switches and the like).
Support searching for Atox formats in an ATOXPATH path variable, or
something like it. Support automatic running of an XSLT processor, per-
haps also with automatic searching for XSLT stylesheets? The distribution
could then have some built-in Atox formats with corresponding XSLT
schemas for various output formats, lowering the threshold for using
Atox.

• Use the indentation features in the documentation.

• Extend the simple API (for using the XML format and for parsing input
files) and document it.

• Make it possible to delete the whitespace of an indent.

• Add support for absolute indentation (e.g. “indented 2 spaces” or “in-
dented more than 4 spaces”)? Explicit relative indentation too? Simply
setting absolute indentation greater than zero could be quite useful.

• Add an ax:fill attribute (with possible values start, end, and both)
to make an element “fill out” the text segment available to it (up to the
next/previous element).

• Add ax:fail and ax:not or the like, for controlling backtracking.

• Make ax:ref work on other (empty) tags than ax:match, as a shortcut
that creates a single ax:match child element.

• Simplify and document the extension API, and allow references to custom
parser elements in Atox format files.

Atox User Manual 20

• Create an element for inserting text into the constructed XML document
(including group substitution from the previous pattern).

• Improve the error messages. Make Atox ignore elements that cause er-
rors? Possibly with a command-line switch? (I.e. become more robust to
malformed text files.)

• Support for escaping patterns. For example, it would be nice to be able to
use dollar signs (possibly with an escape code) in the text even if dollar
signs were used to indicate math mode (as in TEX).

• Possibly a different way of supporting top-level elements (that is, the doc-
ument element). The current method is a bit odd if you use, for example,
a pattern on its own. (Affects only the API, not the XML format.)

• Support for groups and named groups (from all previously matched reg-
ular expressions) in the output . . . and the regular expressions? (The
latter would require more refactoring to implement.)

• Better support for re-use, including using imported structures with re-
named tags. This can include built-in support for (e.g.) paragraphs and
symbols (with the corresponding escape mechanisms for the symbols).

• Command-line shortcuts, obviating the need for an XML format file, pos-
sibly using one of several default grammars (such as “any element may
occur anywhere,” or “the document consists of blocks, and all blocks ex-
cept code blocks consists of inlines”) with proper specification of the var-
ious elements as regular expressions.

• Parametrized use of definitions?

• Pie-in-the-sky: Redesign Atox as a set of small command-line tool filters
that can be used to refine the mark-up in an XML file? This would be
similar to the pipelines used with The Documenter’s Workbench (troff
and friends). A first step would be to make Atox XML-aware, so that it
can be used several times in a pipeline, with different stylesheets.

6 Revision History

0.5.0: Added support for XSLT fragments in Atox format files. Added support
for non-greedy repetition. Added several new options to the configuration
system. Split input and output encoding and made UTF-8 the default output
encoding.

0.4.0: Made the error handling slightly more user-friendly. Added some ba-
sic improvements to the command-line interface (the -e, -f and -o switches,
as well the ability to use multiple input files or standard input). Note that
the new calling convention is incompatible with the previous version, in that
the format file is no longer supplied as an argument. Normalized newline-
handling. Added the utility tags ax:block, ax:sob (start-of-block) and ax:eob

Atox User Manual 21

(end-of-block). Fixed an important bug in the indentation code, which affected
ax:indented. Made empty sequences legal. Added support for config files.

0.3.0: Added some examples to the demo directory. Added the ax:indented
tag. Refactored the codebase to remove the use of side-effects in parsing.
Added backtracking in the form of the ax:try tag. Removed the glued at-
tribute and added the (more powerful) glue attribute.

0.2.0: Added the demo directory with some examples. Added a test suite that
uses the examples. Implemented the glue mechanism, for contiguous pars-
ing. Added the ax:indent and ax:dedent tags, for more powerful parsing of
indentation.

0.1.0: Completely rewritten, using a deterministic top-down parsing algorithm
(related to LL(1), but with a markup-friendly tokenizing strategy). Redesigned
XML format for format description. Simple (currently undocumented) API for
parser construction. Changes from release candidate 1: Made latin 1 the default
encoding, to allow non-ASCII characters in the input text. Fixed some problems
with the minOccur and maxOccur attributes.

0.0.4: Unreleased prototype. Same architecture as 0.0.3 but with a new API,
based on a decorator design. The architecture was a bit too general, and in
some cases not very efficient. No XML for format description.

0.0.3: Unreleased prototype. Rewritten to use a metaclass-based API and a
very general parser architecture. The API was quite convenient, but way too
magical. No XML for format description.

0.0.2: Unreleased prototype. Completely rewritten using a generic pushdown
automaton with regular expressions initiating state transitions. Efficient, but
the API a bit unwieldy. No XML for format description.

0.0.1: Unreleased prototype. Used the Earley parsing algorithm, taken from
Spark25. Was quite slow (mainly, I’m sure, because of my flawed design) and
not quite user-friendly. An XML format was used for format description.

Early sketches: Various attempts at using hard-coded formats but with an eas-
ily extendable design. See, for example, chapter 14, “Instant Markup,” of my
book Practical Python (Apress, 2002).

7 License

Copyright c© 2003, 2004 Magnus Lie Hetland

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

25http://pages.cpsc.ucalgary.ca/~aycock/spark

Atox User Manual 22

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

